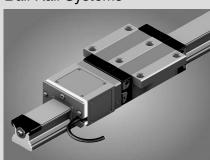
eLINE Profiled Rail Systems


with Ball and Cam Roller Runner Blocks

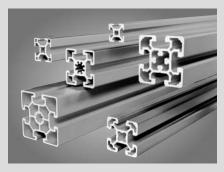
The Drive & Control Company

Linear Motion and Assembly Technologies

Ball Rail Systems

Roller Rail Systems


Linear Bushings and Shafts


Ball Screw Drives

Linear Motion Systems

Basic Mechanical Elements

Manual Production Systems

Assembly Conveyors

VarioFlow Conveyors

Bosch Rexroth Coporation

eLINE Profiled Rail Systems

Product Overview	4
Technical Data, Design Notes, Mounting Instructions	(
General Technical Data and Calculations	6
General Mounting Instructions	7
Selection of Accuracy Classes	8
Combination of Accuracy Classes	ç
Selection of System Preload	Ş
eLINE Ball Runner Blocks	12
FNS R2031 flanged, normal, standard height	12
SNS R2032 slimline, normal, standard height	14
FNN R2033 flanged, normal, low profile	16
SNN R2034 slimline, normal, low profile	18
eLINE Cam Roller Runner Blocks	20
Cam Roller Runner Blocks, standard R2041	20
Cam Roller Runner Blocks, short R2042	22
eLINE Guide Rails	24
For mounting from above R2035	24
For mounting from below R2037	25
Accessories	26
Lube unit with sealing function DSE	26
Funnel-type lube nipple	27
Hydraulic type lube nipple	27
Seal unit DE	27
Cam roller with spigot	28
Mounting instructions	30
Manual clamping unit	31

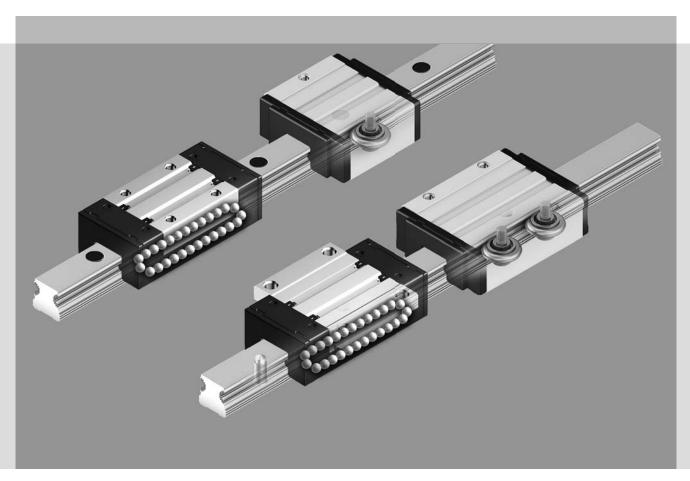
Product Overview

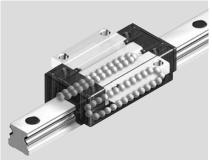
Product background

Profiled rail systems have firmly established themselves as standard linear motion solutions. They were developed for precision applications calling for highly accurate guidance and high rigidity, e.g. in machine tools. In the meantime, a great variety of other applications for rail systems have emerged where high rigidity and accuracy are frequently not the most important considerations.

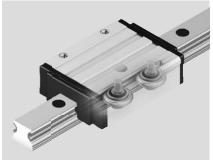
Rexroth's eLINE range of profiled rail systems was developed for applications of this kind, especially for light machinery and for handling and positioning movements where the main emphasis is on economy and durability.

Made of wrought aluminum alloy with running tracks of hardened antifriction bearing steel, the runner blocks and guide rails are characterized by their low weight, compact design, and equal load bearing capacity in all four main directions of loading.

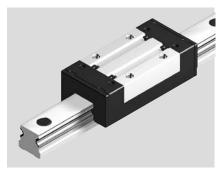

Application areas

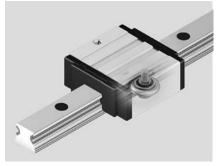

Light machinery, handling technology, jigs and fixtures, assembly technology, positioning units, manual displacement systems, machine enclosures, door and window construction, building services technology, trade show and shop construction, woodworking machinery, DIY equipment, and many more.

Special features of the new eLINE Profiled Rail Systems:


- Available in the three most common sizes to DIN 645-1
- Structural design allows for much greater parallelism and height offsets of the mounting bases.
- Can be mounted even on unmachined mounting surfaces, depending on the application.
- Especially compact, lightweight design; 60% weight saving versus steel versions.
- Much higher corrosion resistance than steel versions.
- Runner blocks initially greased in-factory, therefore provided with long-term lubrication.
- Ball runner blocks available in two accuracy classes and two preload classes.
- Ball retainers in the runner blocks allow them to be removed from the rail without any loss of balls.
- All eLINE runner blocks are delivered with ready-mounted seal units.
- Optional lube units can be mounted at each end to prolong lubrication intervals still further, often reaching lube-for-life, and provide end sealing action.
- Guide rails with reference edge on both sides.
- All accuracy classes can be combined with one another.
- Interchangeability allows individual stocking of runner blocks and guide rails top logistics unequalled anywhere in the world.
- Same connection dimensions as steel ball rail systems.
- Same guide rails for both ball and cam roller runner blocks.

For additional information on Ball Rail Systems and Cam Roller Guides, see the corresponding main catalogs.


Ball Runner Blocks, flanged version Standard height Low profile (size 25)


Cam Roller Runner Blocks, standard

Lube unit with sealing function for eLINE ball and cam roller runner blocks (accessories)

Ball Runner Blocks, slimline version Standard height Low profile (size 25)

Cam Roller Runner Blocks, short

Manual clamping unit

Technical Data, Design Notes, Mounting Instructions

General Technical Data and Calculations

Speed

= 2 m/s (with eLINE ball runner blocks)

= 12 m/s (with eLINE cam roller runner blocks)

Acceleration

 $a_{max} = 30 \text{ m/s}^2 \text{ (with eLINE ball runner blocks)}$

= 50 m/s² (with eLINE cam roller runner blocks)

Temperature resistance

Т $= 0 - 60 \, ^{\circ}\text{C}$

Sealing

All eLINE runner blocks are delivered with ready-mounted seal units.

Definition of dynamic load capacity C

The radial loading of constant magnitude and direction which a linear rolling bearing can theoretically endure for a nominal life of 100 km distance traveled (to ISO 14728 Part 1).

Note on maximum load Fmax

Because of the weight-optimized design of eLINE Profiled Rail Systems, the maximum permissible forces for static and dynamic loads must not be exceeded.

Definition and calculation of the nominal life

The calculated service life which an individual linear rolling bearing, or a group of apparently identical rolling element bearings operating under the same conditions, can attain with a 90% probability, with contemporary, commonly used materials and manufacturing quality under conventional operating conditions (to ISO 14728 Part 1) and optimal installation conditions.

Nominal life at constant speed

Calculate the nominal life L or L_h according to formula (1) or (2):

(1)
$$L = (\frac{C}{F})^3 \cdot 10^5$$

L = nominal life (m)

 $L_h = nominal life$ (h) C = dynamic load capacity (N)

F = equivalent load (N) (m)

s = length of stroke*

n_S = stroke repetition rate

 (min^{-1}) (full cycles)

For a stroke length < 2 x runner block length, the load capacities will be reduced. Please consult us.

General Mounting Instructions

Parallelism of the installed rails measured at the guide rails and at the runner blocks

The parallelism offset P₁ causes a slight increase in preload on one side of the assembly.

As long as the values specified in the table are met, the effect of this on the service life can generally be neglected.

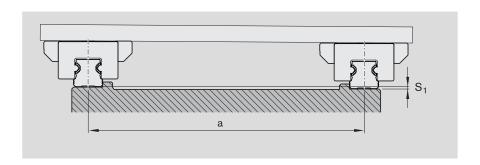
⚠ eLINE profiled rail systems allow substantially higher installation tolerances compared to steel rail systems.

Vertical offset

Provided the vertical offset is kept within the stated tolerances for S_1 and S_2 , its influence on the service life can generally be neglected.

The tolerance for dimension H, as given in the table with accuracy classes in the "Technical Data" section, must be deducted from the permissible vertical offset S_1 of the guide rails.

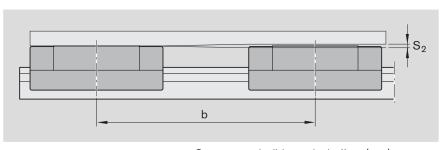
Permissible vertical offset in the transverse direction S₁


Permissible vertical offset in the longitudinal direction S_2

The tolerance "max. difference in dimension H on the same rail", as given the table with accuracy classes in the "Technical Data" section, must be deducted from the permissible vertical offset S_2 of the runner blocks.

Preload classes
C0 = without preload
C1 = with preload

Size	Parallelism offset P ₁ (mm) for preload class		
	Ball runner blocks		Cam roller runner blocks
	CO	C1	C1
15	0.027	0.018	0.034
20	0.031	0.021	0.040
25	0.034	0.022	0.042



 $S_1 = a \cdot Y$

S₁ = permissible vertical offset (mm)a = distance between guide rails (mm)

Y = calculation factor

Calculation factor	For preload clas	s	
	Ball runner blocks		Cam roller runner blocks
	C0	C1	C1
Υ	1.2 · 10 ⁻³	7.5 · 10 ⁻⁴	1.5 · 10 ⁻³

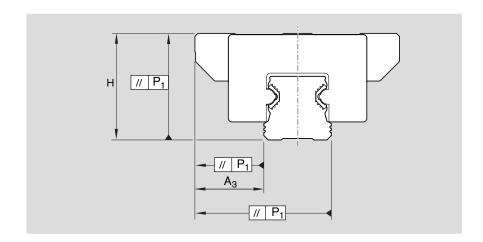
 $S_2 = b \cdot X$

 S_2 = permissible vertical offset (mm)

b = distance between runner blocks (mm)

X = calculation factor

Calculation factor	For preload class		
	Ball runner block	ks	Cam roller runner blocks
	C0	C1	C1
X	6 · 10 ⁻⁴	2.1 · 10 ⁻⁴	6.5 · 10 ⁻⁴


Technical Data, Design Notes, Mounting Instructions

General Technical Data and Calculations

Selection of Accuracy Classes

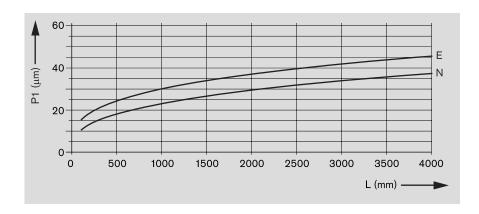
Accuracy classes and their tolerances

eLINE Ball Rail Systems are available in two different accuracy classes, eLINE Cam Roller Rail Systems in accuracy class E only.

Built-in interchangeability through precision machining

Rexroth manufactures its guide rails and runner blocks with such high precision, especially in the running track zone, that each individual component element can be replaced by another at any time. For example, different runner blocks can be used without problems on one and the same guide rail of the same size.

Accuracy classes	Tolerances for dimension H an	d A ₃ (μm)	Max. difference in dimension H and A3 on one guide rail	
	н	A ₃	Δ H , Δ A ₃ (μ m)	
N	±100	±40		30
E	±120	±70		60
Measured	For any runner bl		For different runner blocks	
at middle of	combination at a	ny position	at same position on rail	
runner block:	on rail			


Parallelism offset P₁ of the ball rail system in service

Measured at middle of runner block

Key to graph

P₁ = parallelism offset

= rail length

Combination of Accuracy Classes

Runner blocks		Rails	
		N	E
		(µm)	(µm)
N	Tolerance dimension H	+/- 100	+/- 110
	Tolerance dimension A ₃	+/- 40	+/- 60
	Max. diff. in dimens. H and A ₃ on one rail	30	30
E	Tolerance dimension H	+/- 115	+/- 120
	Tolerance dimension A ₃	+/- 50	+/- 70
	Max. diff. in dimens. H and A ₃ on one rail	60	60

Recommendations for combining accuracy classes

Recommended for short strokes and close spacing of runner blocks: Runner blocks in higher accuracy class than guide rail. Recommended for long strokes and larger runner block spacing:
Guide rail in higher accuracy class than runner blocks.

Selection of System Preload

Selection of the preload class In versions without preload there will be a slight clearance between the runner block and the rail. With two rails and use of more than one runner block per rail, this clearance is usually equalized by parallelism tolerances.

Code	Version	Application area
C0		For particularly smooth running guide systems with
		the lowest possible friction and a minimum of external
		influences, and for mounting bases with low accuracy.
C1	with preload	For more accurate guide systems with low external loads.

Technical Data, Design Notes, Mounting Instructions

Load-dependent size selection

Service life

When the condition $F_{comb} \le F_{0.15C}$ is observed, the figures for service life given in the table will apply.

These values were determined at:

 $F = 0.15 \times C$

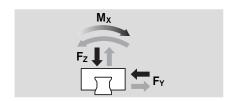
Calculation of bearing load for a runner block

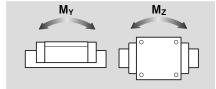
Example:

For $F_{comb} = 1500 \text{ N}$, use at least size 20.

Maximum permissible load

Size		Cam roller runner	
	blocks F _{0.15C} (N)	blocks R2041 F _{0.15C} (N)	
15	750	140	
20	1700	390	
25	2500	400	


Service life	Condition
4000 km	Use of standard runner block
12500 km	Additional use of two lube units with sealing function
25000 km	Relubrication of the lube units after 12500 km



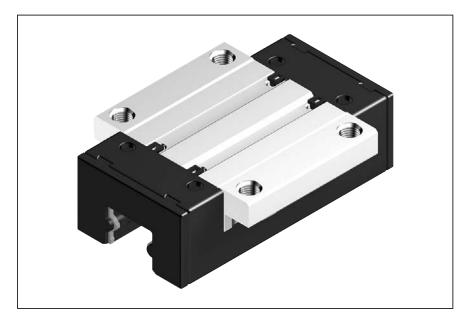
Do not exceed the maximum loading of the screw connections!

Take account of the general service life of lubricants!

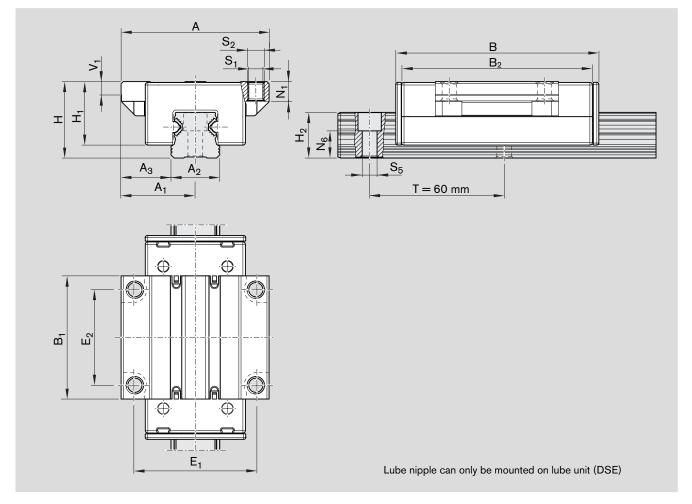
$$F_{comb} = k_f \cdot (\left| F_Z \right| + \left| F_Y \right| + C \cdot \left| \frac{M_X}{M_t} \right| + C \cdot \left| \frac{M_Y}{M_L} \right|) + C \cdot \left| \frac{M_Z}{M_L} \right|)$$

F _{comb}	=	combined equivalent load	(N)	
F_{Y} , F_{Z}	=	Dynamic loads	(N)	
M_X	_	Moment about the X-axis 1)	(Nm)	
M_{Y}	=	Moment about the Y-axis 2)	(Nm)	
M_Z	=	Moment about the Z-axis 2)	(Nm)	
M_t	=	Dynamic torsional load moment	(Nm)	See runner blocks for values
M_L	=	Dynamic longitudinal load moment	(Nm)	See runner blocks for values
$k_{\rm f}$	=	Operating factor		See table for values

- The moment M_X will only be fully effective in an application with only one guide rail. For all other cases, see "Information on moment load calculation."
- 2) The moment M_Y or M_Z will only be effective when only one runner block is mounted on a guide rail. For all other cases, see "Information on moment load calculation."


Recommended operating factors \mathbf{k}_{f}

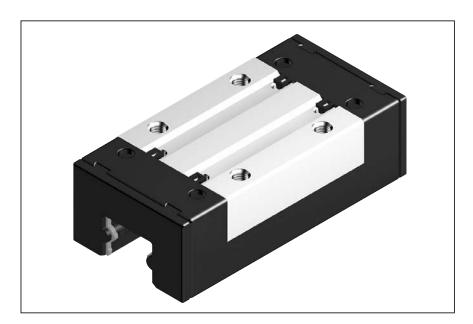
Operating factors		Application		
Ball	Cam roller			
runner	runner			
blocks	blocks			
8.0	0.8	Linear motion guide with manual drive		
1.0	1.0	Door guides, seat adjustment, slide units for lamps, guidance of		
		protective wire meshes, general laboratory applications, slide units		
		for measuring devices		
1.2	1.1	Application in a linear motion axis with ball screw drive		
1.3	1.2	Application in a linear motion axis with rack and pinion drive		
1.5	1.2	Application in a linear motion axis with toothed belt drive		
2.0	1.5	Auxiliary axis of machine tool not subject to dirt		
4.0	4.0	Application in a linear motion axis with pneumatic drive		
7.0	5.0	Application in a linear motion axis with linear motor drive		
9.0	9.0	Application in very dirty environments		
Not for u	ıse in	Main axis of a machine tool; aggressive wood dust environment;		
applications like		oscillating conveyors;		
		Ball runner blocks: $T > 60 ^{\circ}\text{C}$, $a > 30 \text{m/s}^2$, $v > 2 \text{m/s}$		
		Cam roller runner blocks: $T > 60$ °C, $a > 50$ m/s ² , $v > 12$ m/s		
		Danger to life and limb (e.g. unsecured overhead installation)		


11

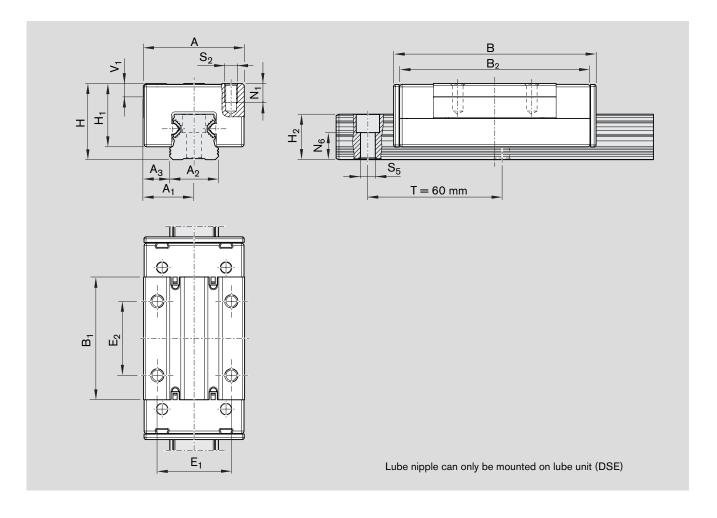
Ball runner block FNS R2031 Flanged, normal, standard height

- Runner block body made from wrought aluminum alloy
- Hardened steel running tracks
- Steel balls to DIN 5401
- With seal unit (DE)
- Initial greasing with Dynalub 510
- For F_{comb} ≤ F_{0.15C}, no relubrication necessary throughout the stated minimum service life

Size	Accuracy class	Part numbers	
		C0	C1
15	N	R2031 194 10	R2031 114 10
	E	R2031 195 10	_
20	N	R2031 894 10	R2031 814 10
	E	R2031 895 10	_
25	N	R2031 294 10	R2031 214 10
	E	R2031 295 10	_


Size	Dime	nsions	(mm)																Weight ¹⁾
	Α	A ₁	A_2	A ₃	В	B ₁	B_2	Н	H ₁	H ₂	V_1	E ₁	E ₂	N_1	N ₆ ^{±0.5}	S ₁	S ₂	S ₅	(kg)
15	47	23.5	15	16.0	64.0	37.8	59.0	24	19.8	14.0	4.1	38	30	6.0	8.1	4.3	M5	4.4	0.08
20	63	31.5	20	21.5	85.9	51.5	80.3	30	24.7	19.0	5.5	53	40	8.0	11.6	5.3	M6	6.0	0.18
25	70	35.0	23	23.5	96.0	58.0	90.0	36	29.9	21.8	6.4	57	45	9.3	12.9	6.7	M8	7.0	0.26

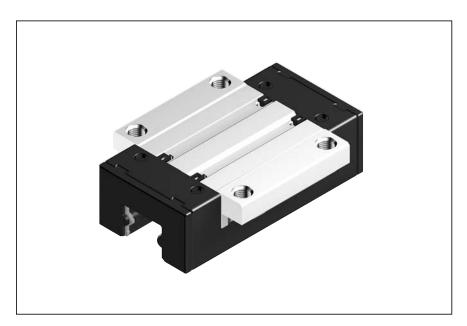
Load capacities ²⁾ (N)		Moment loads (Nm	n)					
	→		Ę						
Size	С	F _{max}	Mt	M _{tmax}	ML	M_{Lmax}			
15	5000	2000	36	14	29	12			
20	11000	4400	101	40	89	35			
25	16000	6400	165	66	147	59			


- 1) Please note the low weight of the runner block.
- 2) Determination of dynamic load capacities and moments is based on a travel life of 100 000 m. However, frequently this is determined on the basis of only 50 000 m. In this case, for comparison: Multiply values C, M_t and M_L from the table by 1.26.

Ball runner block SNS R2032 Slimline, normal, standard height

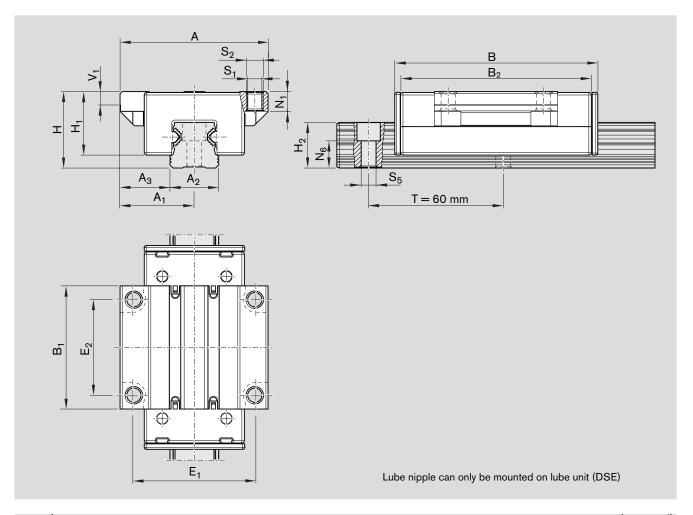
- Runner block body made from wrought aluminum alloy
- Hardened steel running tracks
- Steel balls to DIN 5401
- With seal unit (DE)
- Initial greasing with Dynalub 510
- For F_{comb} ≤ F_{0.15C}, no relubrication necessary throughout the stated minimum service life

Size	Accuracy class	Part numbers	
		C0	C1
15	N	R2032 194 10	R2032 114 10
	E	R2032 195 10	-
20	N	R2032 894 10	R2032 814 10
	E	R2032 895 10	-
25	N	R2032 294 10	R2032 214 10
	E	R2032 295 10	-

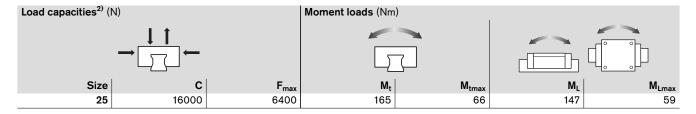

Size	Dime	nsions	(mm)															Weight ¹⁾
	Α	A ₁	A ₂	A_3	В	B ₁	B ₂	H	H ₁	H ₂	V ₁	E ₁	E ₂	N ₁	N ₆ ^{±0.5}	S ₂	S ₅	(kg)
15	34	17	15	9.5	64.0	37.8	59.0	24	19.8	14.0	4.1	26	26	6.0	8.1	M4	4.4	0.07
20	44	22	20	12.0	85.9	51.5	80.3	30	24.7	19.0	5.5	32	36	7.5	11.6	M5	6.0	0.15
25	48	24	23	12.5	96.0	58.0	90.0	36	29.9	21.8	6.4	35	35	9.0	12.9	M6	7.0	0.22

Load capacities ²⁾ (N)		Moment loads (Nm	n)		
	→		Ę			
Size	С	F _{max}	M _t	M _{tmax}	ML	M_{Lmax}
15	5000	2000	36	14	29	12
20	11000	4400	101	40	89	35
25	16000	6400	165	66	147	59

- 1) Please note the low weight of the runner block.
- 2) Determination of dynamic load capacities and moments is based on a travel life of 100 000 m. However, frequently this is determined on the basis of only 50 000 m. In this case, for comparison: Multiply values C, M_t and M_L from the table by 1.26.

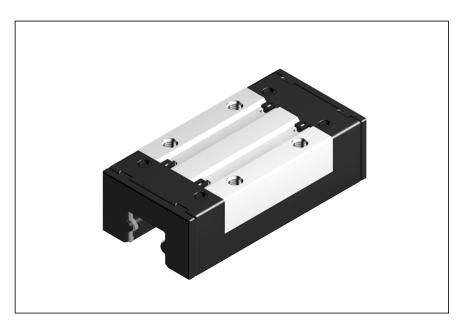

Ball runner block FNN R2033 Flanged, normal, low profile

- Runner block body made from wrought aluminum alloy
- Hardened steel running tracks
- Steel balls to DIN 5401
- With seal unit (DE)
- Initial greasing with Dynalub 510
- For F_{comb} ≤ F_{0.15C}, no relubrication necessary throughout the stated minimum service life



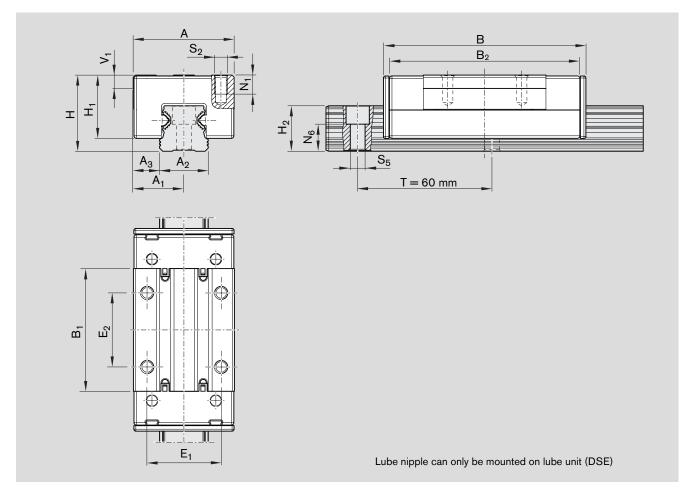
Size	Accuracy class	Part numbers	
		C0	C1
25	N	R2033 294 10	R2033 214 10
	E	R2033 295 10	-

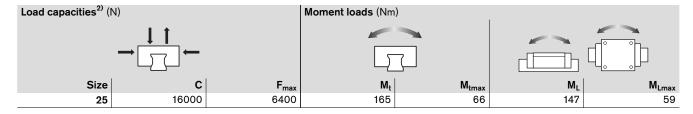
In preparation


Size															Weight ¹⁾				
	Α	A_1	A ₂	A_3	В	B ₁	B ₂	Н	H ₁	H_2	V ₁	E ₁	E ₂	N_1	N ₆ ^{±0.5}	S ₁	S ₂	S ₅	(kg)
25	73	36.5	23	25	96.0	58.0	90.0	33	26.9	21.8	6.4	60	35	9.3	12.9	6.7	M8	7.0	0.24

- 1) Please note the low weight of the runner block.
- 2) Determination of dynamic load capacities and moments is based on a travel life of 100 000 m. However, frequently this is determined on the basis of only 50 000 m. In this case, for comparison: Multiply values C, M_t and M_L from the table by 1.26.

Ball runner block SNN R2034 Slimline, normal, low profile

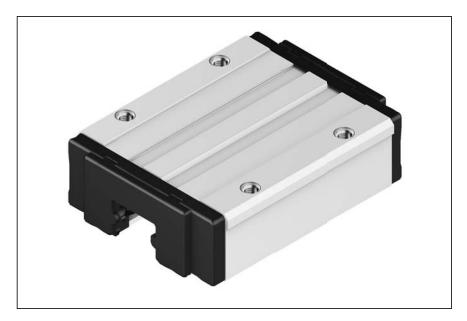

- Runner block body made from wrought aluminum alloy
- Hardened steel running tracks
- Steel balls to DIN 5401
- With seal unit (DE)
- Initial greasing with Dynalub 510
- For F_{comb} ≤ F_{0.15C}, no relubrication necessary throughout the stated minimum service life


Size	Accuracy class	Part numbers	
		C0	C1
25	N	R2034 294 10	R2034 214 10
	E	R2034 295 10	-

In preparation

19

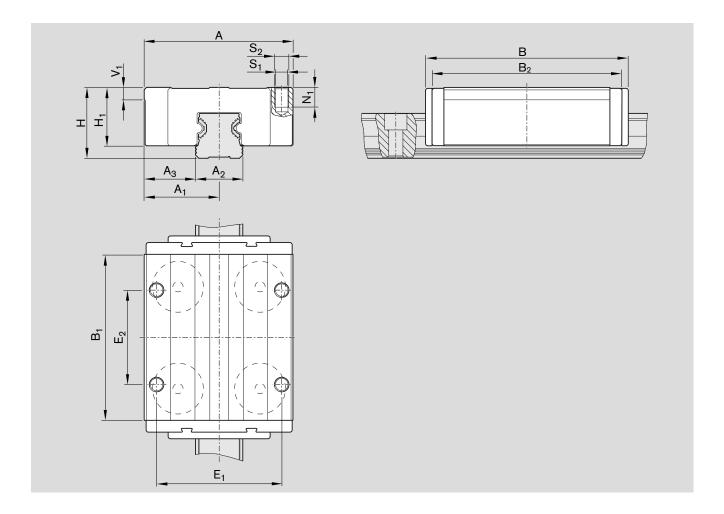
Size	Dime	nsions	(mm)															Weight ¹⁾
	Α	A ₁	A ₂	A ₃	В	B ₁	B_2	Н	H ₁	H ₂	V ₁	E ₁	E ₂	N ₁	N ₆ ^{±0.5}	S ₂	S ₅	(kg)
25	48	24	23	12.5	96.0	58.0	90.0	33	26.9	21.8	6.4	35	35	9.0	12.9	M6	7.0	0.20



- 1) Please note the low weight of the runner block.
- 2) Determination of dynamic load capacities and moments is based on a travel life of 100 000 m. However, frequently this is determined on the basis of only 50 000 m. In this case, for comparison: Multiply values C, M_t and M_L from the table by 1.26.

eLINE Cam Roller Runner Blocks

Cam roller runner blocks, standard R2041


- Travel speed up to 12 m/s
- Runner block body made from wrought aluminum alloy
- 4 corrosion-resistant cam rollers
- With seal unit (DE)
- Same dimensions and mounting hole pattern as ball runner block R 2031
- Lube unit with sealing function DSE as an option
- Can be used on all eLINE guide rails of corresponding size
- Reference edge for precise alignment
- For F_{comb} ≤ F_{0.15C}, no relubrication necessary throughout the stated minimum service life

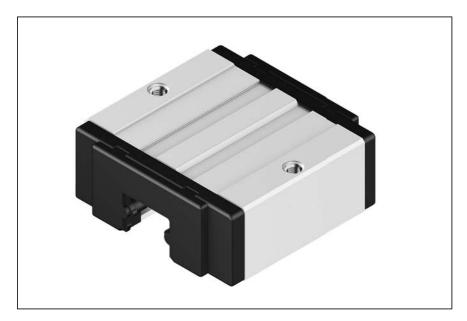
	Size	Accuracy class	Part numbers
			C1
	15	E	R2041 115 10
1)	20	E	R2041 815 10
	25	E	R2041 215 10

¹⁾ In preparation

21

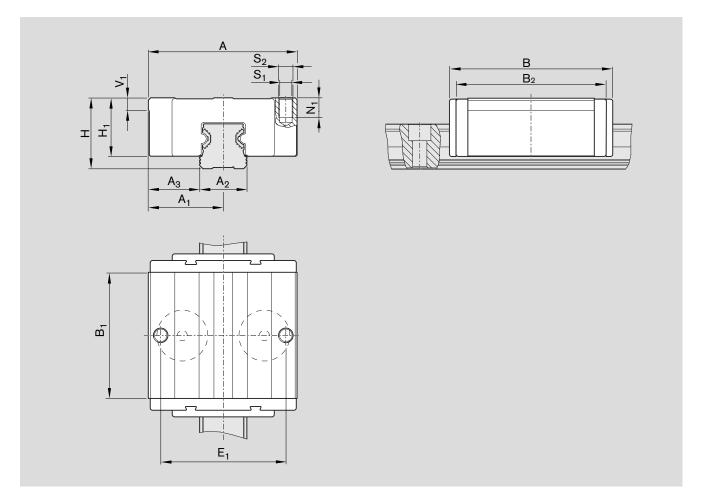
Size	Dimens	sions (m	ım)													Weight ¹⁾
	A	A ₁	A_2	A ₃	В	B ₁	B ₂	Н	H₁	V_1	E ₁	E ₂	N ₁	S ₁	S ₂	(kg)
15	47	23.5	15	16.0	64.0	51.0	59.0	24	19.8	3.3	38	30	8.0	4.3	M5	0.11
20	63	31.5	20	21.5	85.9	70.3	80.3	30	24.7	4.7	53	40	8.0	5.3	M6	0.24
25	70	35.0	23	23.5	96.0	78.0	90.0	36	29.9	5.6	57	45	12.0	6.7	M8	0.33

Size	Load capaciti	$es^{2)}(N)$ F_{2}	<u>f</u> ↑ ↑ ← F _Y		Moment loads (N	lm)		
	С	F _{ymax} / F _{y0max}	F _{zmax}	F _{z0max}	M _t	M _{tmax}	ML	M _{Lmax}
15	940	320	120	200	7	1.1	11.5	1.8
20	2620	800	440	735	24	3.6	42	6.2
25	2700	800	440	735	28	3.9	50	7.2


- 1) Please note the low weight of the runner block.
- 2) Determination of dynamic load capacities and moments is based on a travel life of 100 000 m. However, frequently this is determined on the basis of only 50 000 m. In this case, for comparison: Multiply values C, M_t and M_L from the table by 1.26.

eLINE Cam Roller Runner Blocks

Cam roller runner blocks, short R2042


Requires at least 2 cam roller runner blocks per guide rail.

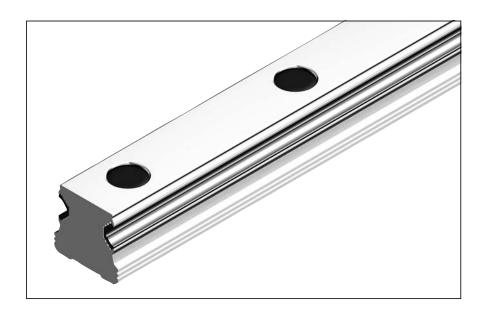
- Travel speed up to 12 m/s
- Runner block body made from wrought aluminum alloy
- 2 corrosion-resistant cam rollers
- With seal unit (DE)
- Lube unit with sealing function DSE as an option
- Can be used on all eLINE guide rails of corresponding size
- Reference edge for precise alignment
- Especially suited for guidance using two rails
- For $F_{comb} \le F_{0,15C}$, no relubrication necessary throughout the stated minimum service life

	Size	Accuracy class	Part numbers C1
	15	E	R2042 115 10
1)	20	E	R2042 815 10
	25	Е	R2042 215 10

¹⁾ In preparation

Siza	Dimens	ione (mr	m)												Weight ¹⁾
Size	Size Dimensions (mm)										_				
	Α	A ₁	A ₂	A ₃	В	B ₁	B ₂	Н	H₁	V ₁	E ₁	N ₁	S_1	S ₂	(kg)
15	47	23.5	15	16.0	49.7	36.7	44.7	24	19.8	3.3	38	8.0	4.3	M5	0.08
20	63	31.5	20	21.5	62.9	47.3	57.3	30	24.7	4.7	53	8.0	5.3	M6	0.16
25	70	35.0	23	23.5	73.0	55.0	67.0	36	29.9	5.6	57	12.0	6.7	M8	0.23

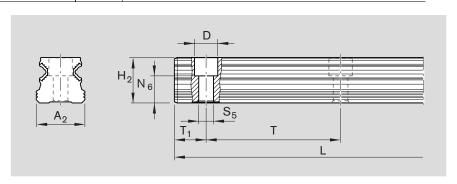
Siz	ze	Load capac	ities²) (N) Fz →	F _Y	Moment loads (Nm)				
		С	F _{y0max}	F _{z0max}	Mt	M _{tmax}			
1	15	470	160	100	3.5	0.5			
2	20	1310	400	365	12	1.8			
2	25	1350	400	365	14	2			


- 1) Please note the low weight of the runner block.
- 2) Determination of dynamic load capacities and moments is based on a travel life of 100 000 m. However, frequently this is determined on the basis of only 50 000 m. In this case, for comparison: Multiply values C and $\ensuremath{M_{t}}$ from the table by 1.26.

eLINE Guide Rails

Guide rails for mounting from above R2035

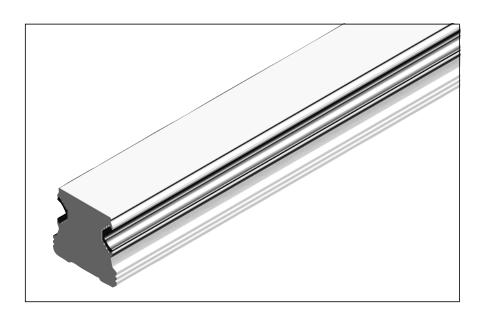
with plastic mounting hole plugs (supplied)


- For ball and cam roller runner blocks
- Rail body made from wrought aluminum alloy, anodized
- Running tracks made from hardened antifriction bearing steel

Part numbers and rail lengths

Size	Accuracy	Part numbers		Recomm	ended rail	length, one	e-piece					
	class	One-piece	Composite	Spacing	Number o	f holes n _B	/Rail lengtl	ength L (mm)				
		Rail length	Number of sections,	Т								
		L (mm)	rail length L (mm)	(mm)								
15	N	R2035 104 31,	R2035 104 3.,		2/80	2/90	2/100	2/116	3/176	4/236		
	E	R2035 105 31,]	5/296	6/356	7/416	8/476	9/536	10/596		
20	N	R2035 804 31,	R2035 804 3.,		11/656	12/716	13/776	14/836	15/896	16/956		
	E	R2035 805 31,			17/1016	18/1076	19/1136	20/1196	21/1256	22/1316		
25	N	R2035 204 31,	R2035 204 3.,]	23/1376	24/1436	25/1496	26/1556	27/1616	28/1676		
	E	R2035 205 31,]	29/1736	30/1796	31/1856	32/1916	33/1976	34/2036		
				60	35/2096	36/2156	37/2216	38/2276	39/2336	40/2396		
					41/2456	42/2516	43/2576	44/2636	45/2696	46/2756		
					47/2816	48/2876	49/2936	50/2996	51/3056	52/3116		
					53/3176	54/3236	55/3296	56/3356	57/3416	58/3476		
					59/3536	60/3596	61/3656	62/3716	63/3776	64/3836		
					65/3896	66/3956	67/4016					

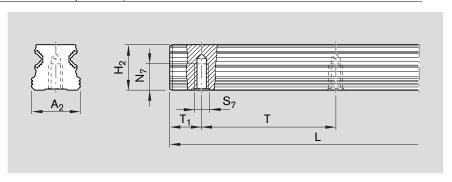
Dimensions and weights


Size	Dimens	Dimensions (mm)												
	A ₂	H ₂	N ₆ ^{±0.5}	D	S ₅	T _{1S} ^{±0.5}	T _{1min}	Т	L _{max} 1)	(kg/m)				
15	15	14.0	8.1	7.4	4.4	28.0	10	60	4016	0.57				
20	20	19.0	11.6	9.4	6.0	28.0	10	60	4016	0.98				
25	23	21.8	12.9	11.0	7.0	28.0	10	60	4016	1.25				

- 1) One-piece guide rails
- 2) Please note the low weight per meter of the guide rail.

eLINE Guide Rails

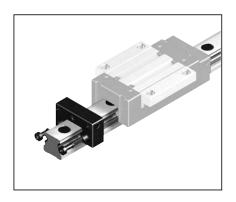
Guide rails for mounting from below R2037

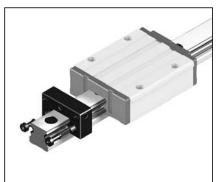

- For ball and cam roller runner blocks
- Rail body made from wrought aluminum alloy, anodized
- Running tracks made from hardened antifriction bearing steel
- Especially suitable for mounting on e.g. metal plates, plastics, or wood with through-holes

Part numbers and rail lengths

Size	Accuracy	Part numbers		Recomm	ended rail	length, on	e-piece			
	class	One-piece	Composite	Spacing	Number o	of holes n _B	h L (mm)			
		Rail length	Number of sections,	T						
		L (mm)	rail length L (mm)	(mm)						
15	N	R2037 104 31,	R2037 104 3.,		2/80	2/90	2/100	2/116	3/176	4/236
	E	R2037 105 31,			5/296	6/356	7/416	8/476	9/536	10/596
20	N	R2037 804 31,	R2037 804 3.,		11/656	12/716	13/776	14/836	15/896	16/956
	E	R2037 805 31,			17/1016	18/1076	19/1136	20/1196	21/1256	22/1316
25	N	R2037 204 31,	R2037 204 3.,		23/1376	24/1436	25/1496	26/1556	27/1616	28/1676
	E	R2037 205 31,		00	29/1736	30/1796	31/1856	32/1916	33/1976	34/2036
				60	35/2096	36/2156	37/2216	38/2276	39/2336	40/2396
					41/2456	42/2516	43/2576	44/2636	45/2696	46/2756
					47/2816	48/2876	49/2936	50/2996	51/3056	52/3116
					53/3176	54/3236	55/3296	56/3356	57/3416	58/3476
					59/3536	60/3596	61/3656	62/3716	63/3776	64/3836
					65/3896	66/3956	67/4016			

Dimensions and weights

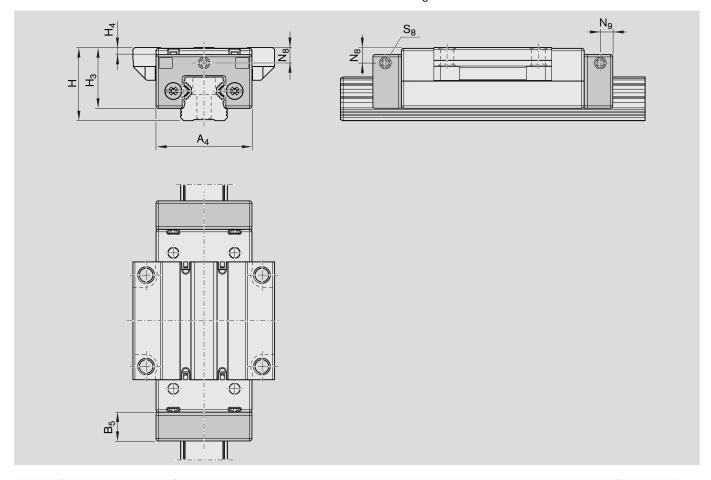

Size	Dimens	i ons (mm)						Weight ²⁾
	A ₂	H ₂	N ₇	S ₇	$T_{1S}^{\pm0.5}$	T _{1min}	Т	L _{max} 1)	(kg/m)
15	15	14.0	7.5	M5	28.0	10	60	4016	0.57
20	20	19.0	9.0	M6	28.0	10	60	4016	0.98
25	23	21.8	12.0	M6	28.0	10	60	4016	1.25


- 1) One-piece guide rails
- 2) Please note the low weight per meter of the guide rail.

Accessories

Lube unit with sealing function DSE

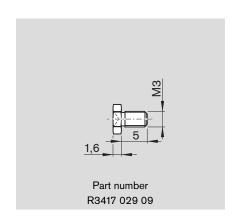
- For ball and cam roller runner blocks
- Material: special polymer
- Acts as an end seal
- Can be relubricated


Mounting instructions:

Before mounting the DSE, remove the seal unit by pulling it upward.

The required fastening elements are supplied along with the unit. Please order the lube nipple separately.

The lube units are prefilled with ISO VG 1000 oil and therefore ready for mounting.


• Push the lube unit onto the guide rail and fasten it to the runner block.

Size	Part number	Dimension	limensions (mm)									
		A ₄	B ₅	Н	H ₃	H ₄	N ₈	N ₉	S ₈	(cm ³)		
15	R2030 125 00	31.7	11.5	24	19.4	0.4	4.5	5.0	МЗ	0.65		
20	R2030 825 00	43.2	13.0	30	24.3	0.4	5.0	5.0	M6	1.35		
25	R2030 226 00	47.2	14.0	36	30.0	3.4	7.6	6.1	M6	1.7		

Funnel-type lube nipple for size 15

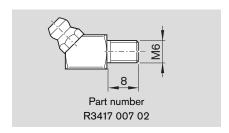
Part number R3417 004 09

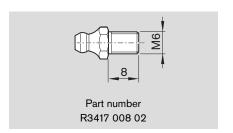
Hydraulic-type lube nipple for size 20 and 25

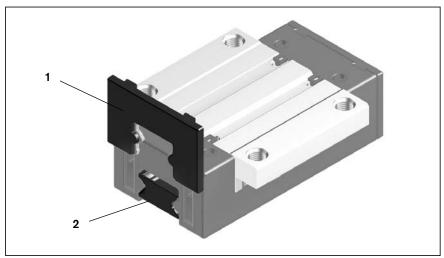
Mounting instructions:

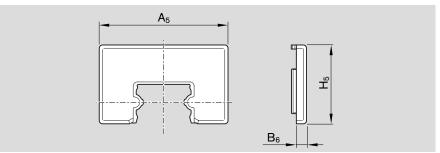
The lube nipples can only be mounted on the lube unit DSE.

Seal unit DE


- For ball and cam roller runner blocks
- All eLINE runner blocks are delivered with ready-mounted seal units
- Pre-oiled before shipment


Material: POM

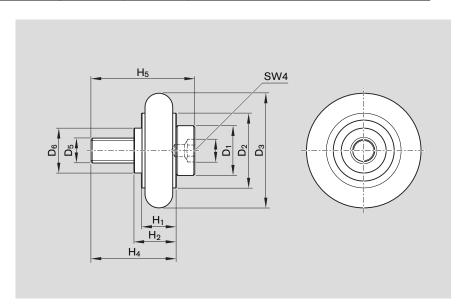

Mounting instructions:


The seal unit cannot be mounted when the runner block is on the guide rail.

- Remove old seals by pulling them upward.
- Slide the seal unit (1) from above into the grooves on the end face of the runner block.
- Mount the runner block, pushing it off the mounting arbor (2) and onto the guide rail. The seal unit will align itself vertically relative to the guide rail.

Size	Part numbers	Dimension	ns (mm)	Quantity per pack	
		A ₅	B ₆		
15	R2030 110 00	31.7	2.5	19.4	20
20	R2030 810 00	43.2	2.8	24.3	
25	R2030 211 00	47.2	3.0	26.5	

Accessories


Cam roller with spigot

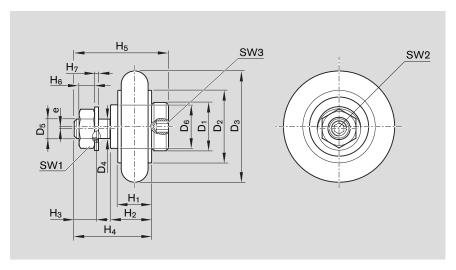
Cam rollers with central spigots R2040

For mounting customer-built carriages, with central spigot for zero clearance adjustment to the guide rail. For applications where even the versatile standard range does not offer the optimum solution to your problem.

Size	Part number	Load capacit	ies (N)			Max. permissible loads (N)			
		Radial load		Axial load		Radial	Axial		
		C	Co	С	Co	F _{max}	F _{0max}		
15	R2040 100 00	615	275	140	75	160	30		
20	R2040 800 00	1530	750	350	200	400	110		
25	R2040 200 00	1530	750	350	200	400	110		

Size	Dimen	sions (ı	mm)								Weight
	D₁	D_2	D_3	D ₅	D ₆	H ₁	H ₂	H ₄	H ₅	SW4	(g)
15	8	11	15	M4	6.2	5	6	13.9	16.5	3	9
20	10	15	21.5	M5	9	7	8.5	17.1	20.8	4	19
25	10	15	23	M5	9	7	8.5	17.1	20.8	4	20

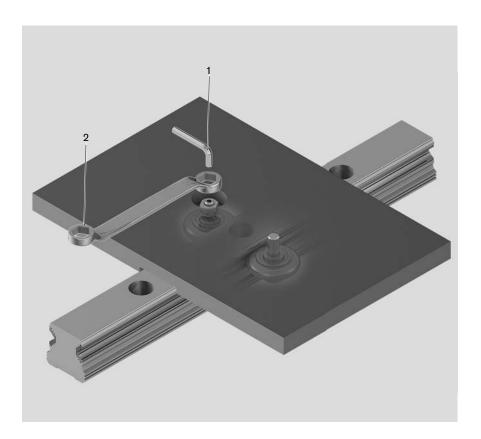
SW = width across flats (WAF)


Cam rollers with eccentric spigot R2040

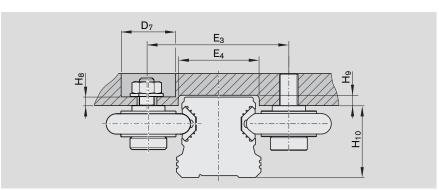
For mounting customer-built carriages, with eccentric spigot for zero clearance adjustment to the guide rail. For applications where even the versatile standard range does not offer the optimum solution to your problem.

Nut and washer included in the supply scope.

Size	Part number	Load capacit	ies (N)			Max. permissible loads (N)			
		Radial load		Axial load		Radial	Axial		
		C	Co	С	C _o	F _{max}	F _{0max}		
15	R2040 100 01	615	275	140	75	160	30		
20	R2040 200 01	1530	750	350	200	400	110		
25	R2040 800 01	1530	750	350	200	400	110		


Size	Dimensions (mm)														Weight			
	D ₁	D_2	D_3	D ₄	D_5	D ₆	H ₁	H ₂	H₃	H ₄	H ₅	H ₆	H ₇	SW1	SW2	SW3	е	g
15	8	11	15	2.95	МЗ	6.2	5	6	6.0	13.9	16.5	2.4	0.5	5.5	1.5	2	0.45	9
20	10	15	21.5	4	M4	9	7	8.5	4.6	16.0	19.5	3.2	0.8	7	2	4	0.45	19
25	10	15	23	4	M4	9	7	8.5	4.6	16.0	19.5	3.2	0.8	7	2	4	0.45	20

SW = width across flats (WAF)

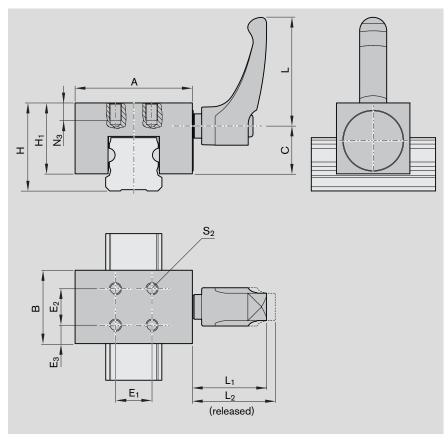

Accessories

Mounting instructions

Size	M _{max} (Nm)
15	1.5
20	2.0
25	2.0

Mounting example

Size	Dimensions (mm)													
	E _{3 ±0.2}	E _{4 ±0.2}	D ₇	H ₈	H ₉	H _{10 ±0.05}								
15	25.65	14.4	13	4.0	2.5	13.0								
20	39.8	19.7	15	3.0	3.0	17.7								
25	44.8	24.2	15	3.0	4.0	19.6								


Manual clamping unit HK 2030 for eLINE profiled rail systems

Matching guide rails

- R2035
- R2037

Size	Part number	Holding force	Dimensions (mm)												
			Α	В	С	Н	H₁	E ₁	E ₂	E ₃	L	L ₁	L_2	N ₃ ¹⁾	S_2
25	R203024282	280 N / 3 Nm	48	30	26.6	36	29	15	15	7.5	44	30.3	33.3	7	M6

¹⁾ Thread depth checked with screw

Sizes 15 and 20 in preparation

Bosch Rexroth Corporation Linear Motion and Assembly Technologies 14001 South Lakes Drive Charlotte, NC 28273 Telephone (800) 438-5983 Facsimile (704) 583-0523 www.boschrexroth-us.com

Bosch Rexroth Corporation Corporate Headquarters 5150 Prairie Stone Parkway Hoffman Estates, IL 60192-3707 Telephone (847) 645-3600 Facsimile (847) 645-6201

Bosch Rexroth Corporation Industrial Hydraulics 2315 City Line Road Bethlehem, PA 18017-2131 Telephone (610) 694-8300 Facsimile (610) 694-8467

Bosch Rexroth Corporation Electric Drives and Controls 5150 Prairie Stone Parkway Hoffman Estates, IL 60192-3707 Telephone (847) 645-3600 Facsimile (847) 645-6201

Bosch Rexroth Corporation Pneumatics 1953 Mercer Road Lexington, KY 40511-1021 Telephone (859) 254-8031 Facsimile (859) 281-3491

Bosch Rexroth Corporation Mobile Hydraulics 1700 Old Mansfield Road Wooster, OH 44691-0394 Telephone (330) 263-3300 Facsimile (330) 263-3333